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An inequality relating total mass and the area of a trapped 
surface in general relativity 
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$Department of Mathematics, University of York, York YO1 5DD,  England 

Received 4 January 1983 

Abstract. Let M be a space-time which is asymptotically flat at past null infinity 9-, 
satisfies the dominant energy condltion and contains a trapped surface F. We show that 
if  T can be connected to 9- by means of a non-singular null-hypersurface then 
m 2  s A / 1 6 n  where m is the Bondi mass with respect to b+” and A in the area of F, 

A well known consequence of some suitable assumption of cosmic censorship such 
as asymptotic predictability (Hawking and Ellis 1973) together with the so-called 
‘no-hair’ conjecture/theorem of Israel-Carter-Hawking-Robinson (Carter 1979), 
which asserts that a black hole will settle down into a Kerr-Newman space-time, is 
that the total mass of an isolated gravitating system satisfies the inequality 

1 6 x m 2 > A  (1) 

where A is the area of some trapped surface 5. (For an outline of the argument see 
e.g. Penrose (1982).) Since the most doubtful physical assumption used in the proof 
of (1) is cosmic censorship, a direct proof of (1) may be regarded as giving some sort 
of test for the censorship hypothesis (Gibbons 1972). 

In this paper we shall present a simple and direct proof of this inequality which does 
not use cosmic censorship. We use a Witten type argument similar to that used in 
proving the positivity of the Bondi mass (Ludvigsen and Vickers 1982, Horowitz and 
Perry 1982) except that our spinor propagation law is based upon a null hypersurface. 
This greatly simplifies the analysis as spinor methods are much more natural on such 
surfaces. The use of null hypersurfaces in the present context does, however, have 
the drawback that it leads to inequality (1) where m is the Bondi mass with respect 
to past null infinity 9- and, in order for this mass to be well defined, we must assume 
a certain degree of asymptotic flatness at 4-. Furthermore, if we wish (1) to hold for 
the ADM mass at space-like infinity, io, we must assume a certain degree of regularity 
in the region of io, in which case the Bondi mass-gain formula on 4-  gives (Ashtekar 
and Magnon-Ashtekar 1979) 

mADM mB (2) 
and hence 

16xmiMD 2 A .  (3) 
Our main result is the following: 
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Theorem, Let M be a space-time which is asymptotically flat at F, which satisfies 
the dominant energy condition and contains a ‘convex’ trapped surface Y (homeomor- 
phic to S 2 )  which may be connected to 4;- by means of a non-singular null hypersurface 
K, Then 167rm aA,  where m is the Bondi mass at the advanced time defined by K 
and A is the area of 9, (See note below for definition of ‘convex’.) 

- - - -  

Figure 1. 

Since the proof of the theorem in the vacuum case is very similar to that in the 
non-vacuum case we shall, for the sake of simplicity and brevity, deal with the vacuum 
case. Details of our proof in the non-vacuum case will be given elsewhere. 

We start by introducing a suitable coordinate system (U, r,  8,4), in a neighbourhood 
of together with an associated Geroch-Held-Penrose (1973) (GHP) spinor dyad. 
Let U be an advanced time parameter which is chosen so that K is given by U =0, 
let r be an afine parameter along the null geodesic generators of the hypersurfaces 
U =constant and finally let 8 and 4 be constant along such generators. Now let oA 
be chosen so that (using the Penrose (1968) abstract index notation) OALAJ = Z, = V , U ,  
PoA = 0 and i A  be chosen SO that O A L ~  = 1 and n, = LALA’ is orthogonal to the two-surface 
S, :  = {x c N : r  = constant}. For such a spinor dyad we have (Hawking 1968) 

and for a quantity t7 of weight ( p ,  q )  with p -q  = -2 we have 

which reduces to the usual result for quantities intrinsic to S ,  which have zero boost 
weight (i.e. p +q = 0). We now specialise to an affine parameter which is chosen so that: 

(i) r = ro =constant on .F; 
(ii) p = 1 / r  +o (~- ’ )  
(iii) limr+ao r 

(N.B. no r-* term); 
-2  h, dS, = 47r. 

Such an r always exsists, but is not in general a Bondi radial coordinate since S,  need 
not tend to a metric sphere+. Let dS, =dSo/V* where V > O  and dSo is the surface 

f Note: We will however assume that 9 is ‘convex‘ in the sense that, asymptotically, S, has positive Gaussian 
curvature. 
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element of a unit sphere, and let Vo: = limr+m rV. Then 

Since Y is a trapped surface we have (Penrose 1968) 

p s o  and p ' S 0  on Y. (7) 

Furthermore by equation (2.22) of GHP we have 

Pp =p2+u&=o 

so that by (8) and (i i )  above we must have p < 0 over the whole of hr. 

the propagation equations 
We now introduce two spinor fields A A  and pA on N which are chosen to satisfy 

PA0 = 0, (9) 

J ' A ~ + P A ~  = o ,  
bpo = 0, 

together with the asymptotic conditions 

lim r $Ao = 0, lim r Jpo = 0, 
,+W r f W  

A o A o , + / . ~ o p o , =  1/Vo. (14) 
It is easy to see that such a pair of spinor fields exists and is well defined on X. 

We now define 

I!r) := --(41r)-' $ [ p ( A  l A  I , +  p 1p + p ' ( A o A o ,  + p O ~ O , ) ]  dS,. (15) 

By using the asymptotic expansions of p and p'  appropriate to our affine parameter 
and spinor dyad (obtained from those in Exton er a1 (1969) by making the null rotation 
LA + LA -GOA and by rescaling r)  it may be shown that the Bondi mass is given by 

S ,  

m = lim I @ ) .  
r-m 

After a fairly lengthy but straightforward spin-coefficient calculation one can show 

and thus 

a3 

CXX + Y F )  dS, dr - p (A 1A 1, + p 1p 1,)  dS,, =: f ( r d  I,;,, fs, fs., 
since p' s 0 on the trapped surface Y = S,. 
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Now a fairly easy calculation gives 

dfldr = f ( ~ A ~ B A ~ ~ - ~ A ~ ~ A ~ ~ - T ’ A ~ ~ A ~ ~ - ~ ~ A ~ ~ ~ A ~  
s, 

+zpo d p o ~ - a p o ~ ~ o ~ - ~ ‘ p o  apo’-T’po, 3po)  dS, 

On integrating by parts, using equations (51, (14) and equation (3.121 of GHP 

(a’d-da’)v= - (pK -4R)v 
where 

K = ~ ~ ’ + p p ’ - ( L z  

together with the fact that 

a’(A~Ao,+pop,,)=a.(l/vo)= -~/vo. 
We obtain 

dS, - fs, E dSr 

dS, =: J ( r ) .  

A straightforward spin-coefficient calculation gives 

dJ/dr = 0 

so that 

On the other hand the asymptotic flatness conditions at 9- give i ( r )  = Br +O(r-’) 
(i.e. no constant term) so we must have 

i ( r ) / r  3 B (28) 
and thus 

(4irm I 2 / r i  3 B 2 .  (29) 

Now R = K + E  is the Gaussian curvature of S ,  so that 

B = -  T d S o  where = lim r2R.  (30) 2 ‘P vo r - z .  

Using equation (A7) of Newman and Tod (1977) it may be shown that 

R = V ; ( ~ - V * I ~ ( I / V ~ ) )  (31) 

where V2 is the Laplacian on the metric sphere so that 

B = t  I Vo-’[1-V21n(l/Vo)]dSo (32) 
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and therefore 
2 

167r2m2/r : t ( ;$  Vo-’ [ l  - V 2  I n ( l l V d ] d S ~ )  ( 3 3 )  

(34)  

by the inequality ( 2 3 )  of Penrose (1982) (the condition that 1 - V 2  log(l/  V,)  > 0 
being guaranteed by our equation ( 3  1) and our convexity condition). 

We have thus shown that 

4 m 2 3 r : .  ( 3 5 )  

We now proceed to show that 47rr i tA ,  and complete the proof. By ( 7 )  we have 
r + p - l =  O ( r - ’ )  and by (8), P ( r  + p - l )  = - u u / p 2  - G 0 ,  and thus r + p  3 0. Hence 

r p + l s 0  

P V = p V  and r V =  V , + O ( r - ’ )  

(since p < 0 on A‘). 
Now 

(36) 

(37)  

so that P(rV) = V ( l  +pr )  S 0 by the above, and hence, by (37) ,  rV 3 V0 and thus 

r 2  3 Vi/  v’. (38)  

Finally we have 

by ( 6 )  

so that 
47rr: Z A  

and thus by ( 3 5 )  
2 167rm ’ t r o  t A 

which proves the theorem. 

(39)  

(40)  
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